Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Samdin, S.B. Chee-Ming Ting Salleh, S.-H. Ariff, A.K. Mohd Noor, A.B. |
Copyright Year | 2013 |
Description | Author affiliation: Centre for Biomed. Eng., UTM, Skudai, Malaysia (Samdin, S.B.; Salleh, S.-H.; Ariff, A.K.) || Center for Biomed. Eng. (CBE), UTM, Skudai, Malaysia (Chee-Ming Ting) |
Abstract | This paper investigates the use of linear dynamic models (LDMs) to improve classification of single-trial EEG signals. Existing dynamic classification of EEG uses discrete-state hidden Markov models (HMMs) based on piecewise-stationary assumption, which is inadequate for modeling the highly non-stationary dynamics underlying EEG. The continuous hidden states of LDMs could better describe this continuously changing characteristic of EEG, and thus improve the classification performance. We consider two examples of LDM: a simple local level model (LLM) and a time-varying autoregressive (TVAR) state-space model. AR parameters and band power are used as features. Parameter estimation of the LDMs is performed by using expectation-maximization (EM) algorithm. We also investigate different covariance modeling of Gaussian noises in LDMs for EEG classification. The experimental results on two-class motor-imagery classification show that both types of LDMs outperform the HMM baseline, with the best relative accuracy improvement of 14.8% by LLM with full covariance for Gaussian noises. It may due to that LDMs offer more flexibility in fitting the underlying dynamics of EEG. |
Starting Page | 4827 |
Ending Page | 4830 |
File Size | 555928 |
Page Count | 4 |
File Format | |
ISBN | 9781457702167 |
ISSN | 1557170X |
DOI | 10.1109/EMBC.2013.6610628 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2013-07-03 |
Publisher Place | Japan |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Hidden Markov models Brain models Electroencephalography Computational modeling Mathematical model Accuracy brain computer interface (BCI) Linear dynamic model (LDM) hidden Markov model (HMM) |
Content Type | Text |
Resource Type | Article |
Subject | Signal Processing Biomedical Engineering Health Informatics Computer Vision and Pattern Recognition |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|