Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Muller, S. Happ, F. Xiaomin Duan Rimolo-Donadio, R. Bruns, H.-D. Schuster, C. |
Copyright Year | 2011 |
Abstract | This paper presents, for the first time, the comprehensive modeling of complete via constellations consisting of several thousands of vias in multilayer printed circuit boards using the physics-based approach. For each computational step of the physics-based approach, several alternatives are analyzed with regard to their computational efficiency, and calculation times are discussed as a function of the number of simulated vias. The results of this analysis are used in combination with previous studies to determine an efficient yet accurate algorithm for the simulation of large numbers of vias. The impact of the stackup configuration on the computational effort of the algorithm is analyzed, and the most computationally expensive parts of the calculation process are identified. A parallelization of the algorithms is carried out to accelerate the critical calculation tasks. As an evaluation example, simulation results for a via array consisting of 10 000 vias and eight cavities are shown. With the proposed simulation methods, the computation time for this via array is about 6.5 h per frequency point on a single CPU and about 40 min per frequency point with the parallel version running on 16 CPUs. |
Starting Page | 489 |
Ending Page | 499 |
Page Count | 11 |
File Size | 844310 |
File Format | |
ISSN | 21563950 |
Volume Number | 3 |
Issue Number | 3 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2013-01-01 |
Publisher Place | U.S.A. |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Ports (Computers) Cavity resonators Computational modeling Transmission line matrix methods Integrated circuit modeling Scattering parameters Capacitance through-hole via Computational electromagnetics equivalent circuit model multilayer printed circuit board |
Content Type | Text |
Resource Type | Article |
Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering Industrial and Manufacturing Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Libarray of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|