Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Buttgen, B. El Mechat, M'H.-A. Lustenberger, F. Seitz, P. |
Copyright Year | 2004 |
Abstract | In optical time-of-flight (TOF) range imaging, harmonic intensity modulation of the illumination source is very common. By detecting the phase delay between emitted and reflected sinusoids, the distance can be measured accurately. However, this harmonic approach does not allow for the concurrent operation of several TOF range cameras because the arbitrary superposition of several differently parametrized sinusoids leads to a sinusoid with incorrect phase. To minimize inaccuracies by multi-camera interference (MCI), pseudonoise (PN) modulated intensity signals are employed for robust TOF range imaging. The time of flight is locally measured by correlating the incident light intensity with two time-shifted versions of the PN sequence, making use of smart demodulation pixels. We derive two fundamental expressions for the basic limitations of TOF measurements using PN sequences. Firstly, the precision of the distance measurement is limited by photon shot noise, and it essentially shows an inverse square root dependence of the number of detected photoelectrons. Secondly, MCI causes an inaccurate distance measurement given as the ratio of two sums. The denominator is the sum of two autocorrelation and two cross-correlation values; the nominator is the sum of one autocorrelation and one cross-correlation value. Due to the lack of a strict mathematical theory of correlation properties of m-sequences, an exhaustive numerical simulation was carried out to obtain expectation values of the distance measurement inaccuracy as a function of the sequence length and the number of interfering cameras. For experimental verification, an image sensor with 176 times 144 demodulation pixels was manufactured with a standard CMOS process offering a CCD option. Measurements taken with up to five concurrently operating sensors were in excellent agreement with our theoretical predictions concerning achievable distance accuracy. This confirms the aptness of PN techniques for multi-camera optical TOF range imaging. |
Sponsorship | IEEE Circuits and Systems Society |
Starting Page | 2109 |
Ending Page | 2119 |
Page Count | 11 |
File Size | 580392 |
File Format | |
ISSN | 15498328 |
Volume Number | 54 |
Issue Number | 10 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2007-10-01 |
Publisher Place | U.S.A. |
Access Restriction | One Nation One Subscription (ONOS) |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Optical modulation Optical imaging Interference Distance measurement Optical sensors Intensity modulation Cameras Demodulation Autocorrelation Stimulated emission three-dimensional (3-D) imaging Correlation delay measurement optical imaging optical modulation multi-camera interference (MCI) pseudonoise (PN) coding spread-spectrum radar |
Content Type | Text |
Resource Type | Article |
Subject | Electrical and Electronic Engineering Hardware and Architecture |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|