Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Khodadadzadeh, M. Jun Li Prasad, S. Plaza, A. |
Copyright Year | 2008 |
Abstract | Hyperspectral image classification has been an active topic of research. In recent years, it has been found that light detection and ranging (LiDAR) data provide a source of complementary information that can greatly assist in the classification of hyperspectral data, in particular when it is difficult to separate complex classes. This is because, in addition to the spatial and the spectral information provided by hyperspectral data, LiDAR can provide very valuable information about the height of the surveyed area that can help with the discrimination of classes and their separability. In the past, several efforts have been investigated for fusion of hyperspectral and LiDAR data, with some efforts driven by the morphological information that can be derived from both data sources. However, a main challenge for the learning approaches is how to exploit the information coming from multiple features. Specifically, it has been found that simple concatenation or stacking of features such as morphological attribute profiles (APs) may contain redundant information. In addition, a significant increase in the number of features may lead to very high-dimensional input features. This is in contrast with the limited number of training samples often available in remote-sensing applications, which may lead to the Hughes effect. In this work, we develop a new efficient strategy for fusion and classification of hyperspectral and LiDAR data. Our approach has been designed to integrate multiple types of features extracted from these data. An important characteristic of the presented approach is that it does not require any regularization parameters, so that different types of features can be efficiently exploited and integrated in a collaborative and flexible way. Our experimental results, conducted using a hyperspectral image and a LiDAR-derived digital surface model (DSM) collected over the University of Houston campus and the neighboring urban area, indicate that the proposed framework for multiple feature learning provides state-of-the-art classification results. |
Starting Page | 2971 |
Ending Page | 2983 |
Page Count | 13 |
File Size | 3116259 |
File Format | |
ISSN | 19391404 |
Volume Number | 8 |
Issue Number | 6 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2015-01-01 |
Publisher Place | U.S.A. |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Hyperspectral imaging Laser radar Feature extraction Data mining Support vector machines multiple feature learning Digital surface model (DSM) hyperspectral light detection and ranging (LiDAR) |
Content Type | Text |
Resource Type | Article |
Subject | Atmospheric Science Computers in Earth Sciences |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|