Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
---|---|
Author | Niu, Xiying Liang, Chen Jing, Xuemei Wei, Jia Zhu, Kaidi |
Copyright Year | 2016 |
Abstract | Gas turbines are widely used as the marine main power system with its higher power density, react quickly, such as LM2500 and MT30. However, it works under design conditions only during running times of 3% to 10%, and it works under part load during most of the time, leading to low efficiency, and it could not achieve full speed or braking at an instant if sudden emergencies happen. Variable geometry turbines can improve this condition by variable angle nozzle (VAN) technology. And, it could enhance engine braking ability, reduce the fuel consumption under part load, improve the aerodynamic performance of engines, enhance accelerating ability of engines, and implement stalling protection to the power turbine. However, the VAN adjustment needs complicated regulating systems, which makes it difficult to turbine structural design, and leads to increased weight. Besides, there is a performance penalty associated with the vane-end part radial clearance required for the movement of variable vanes. In order to increase the part load efficiency of an intercooled recuperated gas turbine, the power turbine is converted from fixed to variable geometry. And, in order to reduce the losses caused by the radial clearance both of vane ends while vane turning, spherical ends are introduced to keep the clearance constant at all turning angles, and the baseline clearance is 0.77% of blade span. In order to determine the effects of VAN on aerodynamic performance of a variable vane, experimental investigations with a variable geometry turbine annular sector cascade have been conducted under five different turning angles (−6°, −3°, 0°, +5° and +10°) and three Mach numbers (0.3Ma, 0.5Ma and 0.6Ma). The parameter distributions were measured at cascade downstream by a five-hole probe and three-axis auto-traversing system, including outlet flow angle, total pressure loss coefficient, energy loss coefficient. The sector measurement results show that, as the vane turning angle is changed from closed to open, the outlet flow angle are increased under all three test Mach number conditions, which affects the flow mismatching between variable vane and downstream row. And, the total pressure losses is increased with the turning angle changed from design to closed or open, and the total pressure loss increases much more when the vane is closed than when it is open. In addition, vane-end clearances have significantly effects on the flow field. Especially on the hub, the leakage loss is higher, that may be due to the adverse effect of intermediate turbine ducts. Detailed results about these are presented and discussed in the paper. |
Sponsorship | International Gas Turbine Institute |
File Format | |
ISBN | 9780791849682 |
DOI | 10.1115/GT2016-56726 |
Volume Number | Volume 1: Aircraft Engine; Fans and Blowers; Marine |
Conference Proceedings | ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition |
Language | English |
Publisher Date | 2016-06-13 |
Publisher Place | Seoul, South Korea |
Access Restriction | Subscribed |
Subject Keyword | Power density Structural design Blades Cascades (fluid dynamics) Clearances (engineering) Fuel consumption Engines Design Gas turbines Energy dissipation Power systems (machinery) Weight (mass) Nozzles Marine gas turbines Probes Turbines Mach number Leakage Braking Ducts Emergencies Flow (dynamics) Pressure Stress Turning angles Geometry |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Libarray of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|