Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
---|---|
Author | Burmberger, Stephan Hirsch, Christoph Sattelmayer, Thomas |
Copyright Year | 2006 |
Abstract | Most gas turbine premix burners without centrebody employ the breakdown of a swirling flow at the transition between the mixing section and the combustor for aerodynamic flame stabilization. As the formation of the desired vortex breakdown pattern depends very sensibly on the shape of the axial and azimuthal velocity profiles in the mixing section, the design of suitable swirlers is typically a cumbersome process and requires an iterative approach consisting of numerical as well as experimental development steps to be iteratively applied until a geometry is found, that provides a spatially as well as temporarily stable vortex breakdown in the primary zone of the combustion chamber without backflow on the centerline of the vortex into the swirler. These difficulties stem from the lack of generally applicable aerodynamic design criteria. The paper attempts to contribute to the development of such design guidelines, which lead quickly to successful swirler designs without need for an excessive number of iterations. For this purpose a family of swirl profiles was generated and the corresponding axial velocity profiles were calculated assuming several radial total pressure distributions. In the next step, the flows were calculated using CFD in order to find out, which velocity profiles produce stable vortex breakdown bubbles at the burner exit. This study reveals that the stable breakdown of the vortex can be achieved for a wide range of velocity distributions, if the radial total pressure distribution is properly selected. However, the radial total pressure distribution in the vortex core is essential for the robustness of the design. Interestingly, velocity profiles with constant total pressure do not show a stable transition of the velocity field at the cross-sectional area change at the entrance of the combustion chamber. In addition, theoretical considerations reveal that an increase of the azimuthal velocity in the vortex core in streamwise direction avoids backflow on the centreline as well as flame flashback. This increase can be achieved using a slightly conical nozzle and introducing a swirl free jet on the centreline upstream of the mixing zone. All effects are explained using the vorticity transport equation. |
Sponsorship | International Gas Turbine Institute |
Starting Page | 413 |
Ending Page | 421 |
Page Count | 9 |
File Format | |
ISBN | 0791842363 |
DOI | 10.1115/GT2006-90495 |
e-ISBN | 0791837742 |
Volume Number | Volume 1: Combustion and Fuels, Education |
Conference Proceedings | ASME Turbo Expo 2006: Power for Land, Sea, and Air |
Language | English |
Publisher Date | 2006-05-08 |
Publisher Place | Barcelona, Spain |
Access Restriction | Subscribed |
Subject Keyword | Computational fluid dynamics Swirling flow Pressure Flow (dynamics) Design Geometry Flames Bubbles Gas turbines Vortices Vorticity Nozzles Robustness Shapes Combustion chambers |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|