Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
---|---|
Author | Wan, Qiaoqiao Cho, Eunhye Park, Seungman Han, Bumsoo Yokota, Hiroki Na, Sungsoo |
Copyright Year | 2013 |
Abstract | Chondrocytes are the only cell type present in the articular cartilage and their response to mechanical stimuli influences the maintenance and remodeling of the cartilage. Numerous studies have shown that the balance between anabolic and catabolic responses of the chondrocytes to mechanical loading is dependent on the loading intensities (reviewed in ref. [1]). Moderate, physiological loading, for instance, increases synthetic activity of the extracellular matrix (ECM) such as collagen type II, aggrecan, and proteoglycan, while decreasing the catabolic activity of degradative enzymes such as matrix metalloproteinases (MMPs) and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) [2,3]. In contrast to moderate loading, static or high-intensity loading has been shown to degrade the cartilage resulting from inhibition of matrix synthesis and up-regulation of catabolic activities [3,4]. Therefore, the importance of these load-dependent signaling pathways involved in the maintenance and remodeling of the cartilage is widely accepted. However, the underlying mechanisms as to how varying magnitudes of mechanical stimuli trigger differential signaling activities that consequently lead to selective gene expression are not clear. FAK and Src are considered to be the main mechanotransduction signaling proteins at the cell-ECM adhesion sites and their activities influence various structural and signaling changes within the cell, including cytoskeletal organization, migration, proliferation, differentiation, and survival [5]. Accumulating evidence has shown that Src and FAK play crucial roles in regulating cartilage maintenance and degeneration and their activation stimulates matrix catabolic genes and activity [6,7]. Rho family GTPases such as RhoA and Rac1 play critical roles in fundamental processes including morphogenesis, polarity, movement, and cell division [8]. They also contribute to cartilage development and degradation [9,10]. Despite these studies, much remains to be elucidated on how load-induced Src and FAK participate in chondrocyte functions, and how their interactions are linked and regulated in connection to the activities of RhoA and Rac1 under different loading conditions. In this study, we use fluorescence resonance energy transfer (FRET)-based biosensors to monitor activities of Src and FAK as well as individual GTPases and evaluate the potential linkage of a network of these signaling molecules under different loading conditions. |
Sponsorship | Bioengineering Division |
File Format | |
ISBN | 9780791855614 |
DOI | 10.1115/SBC2013-14484 |
Volume Number | Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions |
Conference Proceedings | ASME 2013 Summer Bioengineering Conference |
Language | English |
Publisher Date | 2013-06-26 |
Publisher Place | Sunriver, Oregon, USA |
Access Restriction | Subscribed |
Subject Keyword | Linkages Enzymes Fluorescence Maintenance Adhesion Stress Proteins Cartilage Energy transformation Chondrocytes Physiology Resonance Biosensors |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Libarray of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|