Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
---|---|
Author | Uemoto, Yoshio Hirano, Akihiko Hirasawa, Daisuke |
Copyright Year | 2017 |
Abstract | UK very high integrity (VHI) component classification includes design, manufacturing, and inspection requirements that go beyond those established in ASME BPVC Sec. III Subsection NB [1]. One of these requirements is to ensure the component is tolerant of manufacturing defects. This can be demonstrated using a Defect Tolerance Assessment (DTA) based on two parameters fracture mechanics method. The brittle fracture parameter of this assessment requires the analysis of stress occurring in the component against the plane strain fracture toughness, KIC of the material. This work focuses on the practical determination of KIC for materials chosen for a Boiling Water Reactor (BWR) Main Steam Piping (MSP) and Main Steam Isolation Valve (MSIV), which carbon steel seamless pipe SA-106 Grade C and carbon steel casting SA-216 Grade WCB, are respectively. These materials are usually tested by Charpy impact testing specified in [1], but there are not many studies reporting their KIC, and there is not enough information concerning actual piping and valve materials. Thus the authors implemented fracture toughness testing using J-resistance curve according to ASTM E 1820 [2] for test pipe and test casting block simulating actual MS Piping and MSIV, and evaluated KIC(J) to be used in DTA. KIC(J) is evaluated from elastic-plastic fracture toughness, JIC, gained from the J-resistance curve, and equivalent to KIC [3]. KIC(J) corresponds to KJIc in ASTM E 1820. There were some cases, however, in which valid JIC values could not obtained, because of the materials high toughness, test specimen size limitations, and uneven final crack sizes. When valid JIC can’t be obtained, retesting or remanufacturing would significantly affect plant construction schedule. Hence, alternative evaluation methods by which JIC can certainly be obtained are desired. In this study, the authors focused on two types of alternative JIC evaluation methods. The first one is the Stretch Zone Width (SZW) method, in which JIC is calculated from SZW measurements of crack tip plastic blunting on fracture toughness test specimens. The SZW method was well studied in the 1970s, and experimental data showed a clear correlation between JIC values obtained from J-resistance curves and JIC values obtained from SZW measurements [4]. The second method is by correlation of JIC with the energy absorbed during Charpy testing. As represented by Rolf’s study [5], it has been reported that there are correlations between Charpy absorbed energy and KIC for high tensile strength steels. In this study, the validity of the SZW method was first evaluated by comparing its results with JIC obtained from J-resistance curves. Then, the applicability of the JIC values to DTA of actual products was discussed. Finally, by comparing Charpy absorbed energy and KIC(J), the validity and applicability of KIC determination method with Charpy absorbed energy was discussed. |
Sponsorship | Pressure Vessels and Piping Division |
File Format | |
ISBN | 9780791858004 |
DOI | 10.1115/PVP2017-65579 |
Volume Number | Volume 6B: Materials and Fabrication |
Conference Proceedings | ASME 2017 Pressure Vessels and Piping Conference |
Language | English |
Publisher Date | 2017-07-16 |
Publisher Place | Waikoloa, Hawaii, USA |
Access Restriction | Subscribed |
Subject Keyword | Asme boiler and pressure vessel code Fracture mechanics Brittle fracture Inspection Valves Fracture (materials) Boiling water reactors Notch testing Steel Stress Tensile strength Fracture toughness Astm international Design Casting Evaluation methods Plant construction Steam Plane strain Carbon steel Manufacturing Pipes Testing |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Libarray of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|