Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
---|---|
Author | Horie, Hideki Takeuchi, Yutaka Takiwaki, Kenya Sebe, Fumie Kakiuchi, Kazuo Sato, Hisaki |
Copyright Year | 2018 |
Abstract | Development of a fuel cladding or a channel box applying silicon carbide (SiC), which has high accident tolerance, in place of zircaloy (Zry) or Steel Use Stainless (SUS) composing current light water reactors, has being proceeded with after the accident of Fukushima Daiichi Nuclear Power Plant (1F). When applying SiC to core structures of a nuclear power plant such as fuel cladding, it is expected that the difference of high temperature oxidation characteristics in the severe accident (SA) conditions would mitigate progression of core damage comparing with the current Zry fuel core. This study performed SA analyses considering high temperature chemical reaction characteristics of SiC by using SA analysis code “MAAP”, and thermal hydraulics analysis code “TRAC Toshiba version (TRAC)”, and compared the difference between SiC and Zry. Both codes originally have no model of oxidation reaction for SiC. Hence, a new model for SiC in addition to the current model for Zry was incorporated into “MAAP”. On the other hand, “TRAC” adjusted reaction rate by changing oxidation reaction coefficients in the current Zry oxidation reaction models such as Baker-Just and Cathcart correlations in order to simulate SiC-water/steam reaction. In analysis using “MAAP”, seven accident sequences from representative Probabilistic Risk Assessment ones were selected to evaluate the difference of SA behavior between two materials. As a result, in the case of replacing current Zry of fuel claddings and channel boxes into SiC, an amount of hydrogen generation reduced to about 1/6 than the case of Zry. In addition to that, in the case of replacing SUS structures in the reactor core into SiC, an amount of hydrogen generation moreover reduced to about 1/6 than the above result, which means just about 2% of an amount in the original case. On the other hand, in analysis using “TRAC”, the accident sequence for unit 3 of 1F (1F3) was selected, and reaction rate in the oxidation reaction model was examined as parameter. In the case of 1.0 time of the reaction rate, which means an original reaction rate, maximum fuel cladding temperature exceeded 2000K in 50 hour after reactor scram. However, using the reaction rate below 0.01 to the original one, the fuel cladding temperature didn’t exceed 1,600K. |
Sponsorship | Nuclear Engineering Division |
File Format | |
ISBN | 9780791851456 |
DOI | 10.1115/ICONE26-81923 |
Volume Number | Volume 3: Nuclear Fuel and Material, Reactor Physics, and Transport Theory |
Conference Proceedings | 2018 26th International Conference on Nuclear Engineering |
Language | English |
Publisher Date | 2018-07-22 |
Publisher Place | London, England |
Access Restriction | Subscribed |
Subject Keyword | Water Temperature Hydrogen Japan Light water reactors Chemical reactions 2011 Fukushima nuclear disaster High temperature Fuels Steel Scram Steam Probabilistic risk assessment Oxidation Silicon Thermal hydraulics Nuclear power stations Damage Cladding systems (building) Accidents |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Libarray of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|