Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | SpringerLink |
---|---|
Author | Tejedor, Javier Echeverría, Alejandro Wang, Dong Vipperla, Ravichander |
Copyright Year | 2011 |
Abstract | Spoken term detection (STD) is the task of searching for occurrences of spoken terms in audio archives. It relies on robust confidence estimation to make a hit/false alarm (FA) decision. In order to optimize the decision in terms of the STD evaluation metric, the confidence has to be discriminative. Multi-layer perceptrons (MLPs) and support vector machines (SVMs) exhibit good performance in producing discriminative confidence; however they are severely limited by the continuous objective functions, and are therefore less capable of dealing with complex decision tasks. This leads to a substantial performance reduction when measuring detection of out-of-vocabulary (OOV) terms, where the high diversity in term properties usually leads to a complicated decision boundary. In this paper we present a new discriminative confidence estimation approach based on evolutionary discriminant analysis (EDA). Unlike MLPs and SVMs, EDA uses the classification error as its objective function, resulting in a model optimized towards the evaluation metric. In addition, EDA combines heterogeneous projection functions and classification strategies in decision making, leading to a highly flexible classifier that is capable of dealing with complex decision tasks. Finally, the evolutionary strategy of EDA reduces the risk of local minima. We tested the EDA-based confidence with a state-of-the-art phoneme-based STD system on an English meeting domain corpus, which employs a phoneme speech recognition system to produce lattices within which the phoneme sequences corresponding to the enquiry terms are searched. The test corpora comprise 11 h of speech data recorded with individual head-mounted microphones from 30 meetings carried out at several institutes including ICSI; NIST; ISL; LDC; the Virginia Polytechnic Institute and State University; and the University of Edinburgh. The experimental results demonstrate that EDA considerably outperforms MLPs and SVMs on both classification and confidence measurement in STD, and the advantage is found to be more significant on OOV terms than on in-vocabulary (INV) terms. In terms of classification performance, EDA achieved an equal error rate (EER) of 11% on OOV terms, compared to 34% and 31% with MLPs and SVMs respectively; for INV terms, an EER of 15% was obtained with EDA compared to 17% obtained with MLPs and SVMs. In terms of STD performance for OOV terms, EDA presented a significant relative improvement of 1.4% and 2.5% in terms of average term-weighted value (ATWV) over MLPs and SVMs respectively. |
Starting Page | 5 |
Ending Page | 34 |
Page Count | 30 |
File Format | |
ISSN | 13807501 |
Journal | Multimedia Tools and Applications |
Volume Number | 62 |
Issue Number | 1 |
e-ISSN | 15737721 |
Language | English |
Publisher | Springer US |
Publisher Date | 2011-11-04 |
Publisher Place | Boston |
Access Restriction | Subscribed |
Subject Keyword | Spoken term detection Confidence measurement Evolutionary discriminant analysis Multimedia Information Systems Computer Communication Networks Data Structures, Cryptology and Information Theory Special Purpose and Application-Based Systems |
Content Type | Text |
Resource Type | Article |
Subject | Media Technology Software Computer Networks and Communications Hardware and Architecture |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Libarray of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|