Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Herraiz, J.L. Espana, S. Udias, J.M. Vaquero, J.J. Desco, M. |
Copyright Year | 2005 |
Description | Author affiliation: Dpto. Fisica Atomica, Molecular y Nucl., Complutense Univ., Spain (Herraiz, J.L.; Espana, S.; Udias, J.M.) |
Abstract | Small animal positron emission tomography (PET) scanners are being increasingly used as a basic measurement tool in modern biomedical research. The new designs and technologies of these scanners and the modern reconstruction methods have allowed to reach high spatial resolution and sensitivity. Despite their successes, some important issues remain to be addressed in high resolution PET imaging. First, iterative reconstruction methods like maximum likelihood-expectation maximization (MLEM) are known to recover resolution, but also to create noisy images and edge artifacts if some kind of regularization is not imposed. Second, the limit of resolution achievable by iterative methods on high resolution scanners is not quantitatively understood. Third, the use of regularization methods like Sieves or maximum a posteriori (MAP) requires the determination of the optimal values of several adjustable parameter that may be object-dependent. In this work we review these problems in high resolution PET and establish that the origin of them is more related with the physical effects involved in the emission and detection of the radiation during the acquisition than with the kind of iterative reconstruction method chosen. These physical effects (positron range, non-collinearity, scatter inside the object and inside the detector materials) cause that the tube of response (TOR) that connects the voxels with a line of response (LOR) is rather thick. This implies that the higher frequencies of the patient organ structures are not recorded by the scanner and therefore cannot be recovered during the reconstruction. As iterations grow, ML-EM algorithms try to recover higher frequencies in the image. Once that a certain critic frequency is reached, this only maximizes high frequency noise. Using frequency response analyses techniques, we determine the maximum achievable resolution, before edge artifacts spoil the quality of the image, for a particular scanner as a function of the thickness of the TOR, and independently of the reconstruction method employed. With the same techniques, we can deduce well defined stopping criteria for reconstructions methods. Also, criteria for the highest number of subsets which should be used and how the design of the scanners can be optimized when statistical reconstruction methods are employed, is established. |
Starting Page | 5 |
Ending Page | 1850 |
File Size | 779307 |
Page Count | 1846 |
File Format | |
ISBN | 0780392213 |
ISSN | 10957863 |
DOI | 10.1109/NSSMIC.2005.1596690 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2005-10-23 |
Publisher Place | Puerto Rico |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Reconstruction algorithms Positron emission tomography Frequency Spatial resolution Image resolution Iterative methods Animals Biomedical measurements Biomedical imaging High-resolution imaging |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Libarray of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|