Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | de Fortuny, E.J. Martens, D. |
Copyright Year | 2012 |
Abstract | Many of the state-of-the-art data mining techniques introduce nonlinearities in their models to cope with complex data relationships effectively. Although such techniques are consistently included among the top classification techniques in terms of predictive power, their lack of transparency renders them useless in any domain where comprehensibility is of importance. Rule-extraction algorithms remedy this by distilling comprehensible rule sets from complex models that explain how the classifications are made. This paper considers a new rule extraction technique, based on active learning. The technique generates artificial data points around training data with low confidence in the output score, after which these are labeled by the black-box model. The main novelty of the proposed method is that it uses a pedagogical approach without making any architectural assumptions of the underlying model. It can therefore be applied to any black-box technique. Furthermore, it can generate any rule format, depending on the chosen underlying rule induction technique. In a large-scale empirical study, we demonstrate the validity of our technique to extract trees and rules from artificial neural networks, support vector machines, and random forests, on 25 data sets of varying size and dimensionality. Our results show that not only do the generated rules explain the black-box models well (thereby facilitating the acceptance of such models), the proposed algorithm also performs significantly better than traditional rule induction techniques in terms of accuracy as well as fidelity. |
Page Count | 14 |
File Size | 2939741 |
Starting Page | 2664 |
Ending Page | 2677 |
File Format | |
ISSN | 2162237X |
Volume Number | 26 |
Issue Number | 11 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2015-01-01 |
Publisher Place | U.S.A. |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Data mining Data models Support vector machines Accuracy Training Feature extraction Predictive models support vector machine (SVM). Active learning comprehensibility neural network random forest (RF) rule extraction support vector machine (SVM) |
Content Type | Text |
Resource Type | Article |
Subject | Computer Networks and Communications Software Computer Science Applications Artificial Intelligence |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Libarray of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|